Extracting Insight from Noisy Cellular Networks

نویسندگان

  • Christian R. Landry
  • Emmanuel D. Levy
  • Diala Abd Rabbo
  • Kirill Tarassov
  • Stephen W. Michnick
چکیده

Network biologists attempt to extract meaningful relationships among genes or their products from very noisy data. We argue that what we categorize as noisy data may sometimes reflect noisy biology and therefore may shield a hidden meaning about how networks evolve and how matter is organized in the cell. We present practical solutions, based on existing evolutionary and biophysical concepts, through which our understanding of cell biology can be enormously enriched.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Neural Networks, Genetic Algorithms and Object Extraction

A cellular neural network (CNN) is an information processing system with a large scale nonlinear analog circuit. Setting up a CNN for a particular task needs a proper selection of circuit parameters (cloning template) which determines the dynamics of the network. The present paper provides a methodology, demonstrating the capability of Genetic Algorithms, for aUiomatic selection of cloning temp...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Genetic algorithms with fuzzy fitness function for object extraction using cellular networks

Setting up a CeJlular Neural Network (CNN) for a particular task needs a proper selection of circuit parameters (cloning template) which determines the dynamics of the network. The present paper provides a methodology, demonstrating the capability of Genetic Algorithms with a fuzzy fitness function, for automatic selection of cloning templates when a CNN is used in extracting object regions fro...

متن کامل

Computational Methods for Learning Bayesian Networks from High-Throughput Biological Data

Data from high-throughput technologies, such as gene expression microarrays, promise to yield insight into the nature of the cellular processes that have been disrupted by disease, thus improving our understanding of the disease and hastening the discovery of effective new treatments. Most of the analysis thus far has focused on identifying differential measurements, which form the basis of bio...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2013